Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal (2024)

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article ADS Google Scholar

  • Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article ADS Google Scholar

  • Haldane, F. D. M. Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property. Phys. Rev. Lett. 93, 206602 (2004).

    Article ADS Google Scholar

  • Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article ADS MathSciNet Google Scholar

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article ADS Google Scholar

  • Weng, H. M., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar

  • Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 337–354 (2017).

    Article ADS Google Scholar

  • Weng, H. M., Yu, R., Hu, X., Dai, X. & Fang, Z. Quantum anomalous Hall effect and related topological electronic states. Adv. Phys. 64, 227–282 (2015).

    Article ADS Google Scholar

  • Liu, C.-X., Zhang, S.-C. & Qi, X.-L. The quantum anomalous Hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2016).

    Article ADS Google Scholar

  • Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article ADS Google Scholar

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article ADS Google Scholar

  • Fang, C., Gilbert, M. J. & Bernevig, B. A. Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. Phys. Rev. Lett. 112, 046801 (2014).

    Article ADS Google Scholar

  • Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article ADS Google Scholar

  • Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article ADS Google Scholar

  • Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

    Article ADS Google Scholar

  • Wang, X., Vanderbilt, D., Yates, J. R. & Souza, I. Fermi-surface calculation of the anomalous Hall conductivity. Phys. Rev. B 76, 195109 (2007).

    Article ADS Google Scholar

  • Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article ADS Google Scholar

  • Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article ADS Google Scholar

  • Xu, G., Weng, H. M., Wang, Z. J., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article ADS Google Scholar

  • Kübler, J. & Felser, C. Weyl points in the ferromagnetic Heusler compound Co2MnAl. Europhys. Lett. 114, 47005 (2016).

    Article ADS Google Scholar

  • Wang, Z. J. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article ADS Google Scholar

  • Chang, G. Q. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    Article ADS Google Scholar

  • Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

    Article Google Scholar

  • Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagome lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article ADS Google Scholar

  • Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the Kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015).

    Article ADS Google Scholar

  • Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article ADS Google Scholar

  • Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: Structure and type-antitype relations of Shandites M3/2AS (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article Google Scholar

  • Weihrich, R. & Anusca, I. Half antiperovskites. III - Crystallographic and electronic structure effects in Sn2-xInxCo3S2. Z. Anorg. Allg. Chem. 632, 1531–1537 (2006).

    Article Google Scholar

  • Vaqueiro, P. & Sobany, G. G. A powder neutron diffraction study of the metallic ferromagnet Co3Sn2S2. Solid State Sci. 11, 513–518 (2009).

    Article ADS Google Scholar

  • Schnelle, W. et al. Ferromagnetic ordering and half-metallic state of Sn2Co3S2 with the Shandite-type structure. Phys. Rev. B 88, 144404 (2013).

    Article ADS Google Scholar

  • Dedkov, Y. S., Holder, M., Molodtsov, S. L. & Rosner, H. Electronic structure of shandite Co3Sn2S2. J. Phys. Conf. Ser. 100, 072011 (2008).

    Article Google Scholar

  • Holder, M. et al. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2. Phys. Rev. B 79, 205116 (2009).

    Article ADS Google Scholar

  • Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article ADS Google Scholar

  • Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    Article ADS Google Scholar

  • Ziman, J. M. Electrons and Phonons: Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960).

  • Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. B 97, 235416 (2018).

    Article ADS Google Scholar

  • Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article ADS MathSciNet Google Scholar

  • Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article ADS Google Scholar

  • Onoda, S., Sugimoto, N. & Nagaosa, N. Intrinsic versus extrinsic anomalous Hall effect in ferromagnets. Phys. Rev. Lett. 97, 126602 (2006).

    Article ADS Google Scholar

  • Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article ADS Google Scholar

  • Yue, D. & Jin, X. Towards a better understanding of the anomalous Hall effect. J. Phys. Soc. Jpn 86, 011006 (2016).

    Article ADS Google Scholar

  • Gantmakher, V. F. The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317–362 (1974).

    Article ADS Google Scholar

  • Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article Google Scholar

  • Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

    Article ADS Google Scholar

  • Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. When chiral photons meet chiral fermions: Photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116, 026805 (2016).

    Article ADS Google Scholar

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article Google Scholar

  • Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Article Google Scholar

  • Yang, B.-J., Moon, E.-G., Isobe, H., & Nagaosa, N. Quantum criticality of topological phase transitions in three-dimensional interacting electronic systems. Nat. Phys. 10, 774–778 (2014).

    Article Google Scholar

  • Kurebayashi, D. & Nomura, K. Voltage-driven magnetization switching and spin pumping in Weyl semimetals. Phys. Rev. Appl. 6, 044013 (2016).

    Article ADS Google Scholar

  • Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article ADS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article ADS Google Scholar

  • Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article ADS Google Scholar

  • Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Greg Kuvalis

    Last Updated:

    Views: 6066

    Rating: 4.4 / 5 (75 voted)

    Reviews: 90% of readers found this page helpful

    Author information

    Name: Greg Kuvalis

    Birthday: 1996-12-20

    Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

    Phone: +68218650356656

    Job: IT Representative

    Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

    Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.